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Abstract. The distribution of return intervals of extreme events is studied in time series characterized
by finite-term correlations with non-exponential decay. Precisely, it has been analyzed the statistics of
the return intervals of extreme values of the resistance fluctuations displayed by resistors with granular
structure in nonequilibrium stationary states. The resistance fluctuations are calculated by Monte Carlo
simulations using a resistor network approach. It has been found that for highly disordered networks,
when the auto-correlation function displays a non-exponential and non-power-law decay, the distribution
of return intervals of the extreme values is a stretched exponential, with exponent independent of the
threshold.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.Tp Time
series analysis – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Fluctuations of prices in financial markets, wind speed
data or daily precipitations in a given place for the same
time windows are typically described by time series x(t)
made by uncorrelated records [1,2]. In these cases, by con-
sidering the return intervals rq of extreme events associ-
ated with the overcoming of a given threshold q (i.e. the
time intervals between two consecutive occurences of the
condition x(t) > q), it can be seen that the rq are expo-
nentially distributed [1,3,4]. In other terms, the probabil-
ity density function (PDF) of the distribution of the rq is
given by [1,3,4]:

Pq(r) = (1/Rq) exp(−r/Rq) (1)

where Rq is the mean return interval. Of course, the
higher the threshold q, the bigger is the value of Rq.
On the other hand, in the last years it has become
clear that several other important examples of time se-
ries display long-term correlations [2,5,6]. This is the
case of physiological data (heartbeats [7,8] and neuron
spikes [9]), hydro-meteorological records (daily tempera-
tures [2,5,10]), geophysical or astrophysical data (occur-
rence of earthquakes [11,12] or solar flares [13]), inter-
net traffic [5] and stock market volatility [2,14] records.
Long-term correlated series are characterized by an auto-
correlation function, Cx(s), decaying as a power-law:

Cx(s) = 〈xixi+s〉 =
1

N − s

N−s∑

i=1

xixi+s ∼ s−γx (2)
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with exponent γx (correlation exponent) between 0 and 1.
In this case, the mean correlation time τ , given by the inte-
gral over s of Cx(s), diverges. The effect of long-term cor-
relations on the statistics of the rq has been first studied
by Bunde et al. [5] and the conclusions of this study were
the following. i) The mean return interval Rq is left un-
changed by the presence of long-term correlations; ii) the
distribution of return intervals becomes a stretched expo-
nential:

Pq(r) = a exp
[−(

b r/Rq

)γ]
(3)

where the two exponents γ and γx were found to be equal;
iii) the return intervals themself are long-term correlated
with a correlation exponent γ′ ≈ γx. As noted by Altmann
and Kantz in a very recent paper [2], the result i), obtained
by Bunde et al. [5] by statistical arguments, can be iden-
tified with Kac’s lemma [15] introduced in the context of
dynamical systems. The results ii) and iii) were obtained
in reference [5] on the ground of numerical calculations
performed on long-term correlated and Gaussian time se-
ries generated by the algorithm described in reference [16].
It must be noted that the result ii) only applies to linear
time series (i.e. to series whose properties are completely
defined by the power spectrum and by the probability dis-
tribution, regardless of the Fourier phases) [2,6]. Apart
from this restriction, the stretched exponential distribu-
tion of the rq seems to be a general feature in presence
of long-term correlations in a time series [2,6]. It must
be underlined that this fact has important consequences
on the observation of extreme events: indeed it implies a
strong enhancement of the probability of having return in-
tervals well below and well above Rq, in comparison with
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the occurrence of extreme events in an uncorrelated time
series. Furthermore, it must be noted that the stretched
exponential distribution depends on the parameter γ only,
being a and b in equation (3) functions of γ, as shown in
reference [2].

In this paper it will be analyzed the effect on the distri-
bution of the rq of the presence of finite-term correlations
with non-exponential decay, a situation which can occur in
systems which are approaching criticality, where interme-
diate behaviors, consisting in a non-exponential and non-
power-law decay of correlations can emerge [4]. Precisely,
in the following section it will be studied the statistics
of the return intervals of extreme values of the resistance
fluctuations displayed by a resistor with granular struc-
ture in a nonequilibrium stationary state [17–21].

2 Method and results

The time series analyzed in this paper consist in the resis-
tance fluctuations of a thin resistor with granular struc-
ture, in contact with a thermal bath at temperature T0

and biased by an external current I. The resistance values
are calculated by using the stationary and biased resis-
tor network (SBRN) model [17–22]. This model describes
a thin film with granular structure as a two-dimensional
resistor network in a stationary state determined by the
competition between two stochastic processes, breaking
and recovery of the elementary resistors. A broken ele-
mentary resistor (with resistance 109 higher than the resis-
tance corresponding to a normal elementary resistor) can
be associated with a high resistivity region within the con-
ducting material. Both processes are thermally activated
and biased by the external current. The resistance of the
network and its fluctuations are calculated by Monte Carlo
simulations [17,18,21]. Within this model, the level of in-
trinsic disorder in the network (average fraction of broken
resistors in the vanishing current limit [23]) is controlled
by a characteristic parameter [20]: λ ≡ (ED −ER)/kBT0,
where ED and ER are the activation energies respectively
of the breaking and recovery processes. The intrinsic dis-
order parameter λ ranges between: λmin < λ < λmax,
where λmax corresponds to an homogeneous resistor (per-
fect network) and λ = λmin ≈ 0 to the maximum level of
intrinsic disorder compatible with a stationary state of the
network (stationary resistance fluctuations) [18–21,23].

In addition to this intrinsic disorder, the SBRN model
considers also the presence of a disorder driven by the ex-
ternal current I. As a consequence, for a given value of λ,
and for a network of given size, nonequilibrium station-
ary states of the network exist only when I ≤ IB (break-
down threshold). For contrast, when I > IB the network
undergoes an electrical breakdown associated with an ir-
reversible divergence of its resistance [17–19,21]. For an
arbitrary value of λ this breakdown corresponds to a first
order transition from a conducting to a non-conducting
state of the network [18–20]. However, at decreasing λ
values, when λ → λmin, the system becomes more and
more close to its critical point [18–20].
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Fig. 1. Normalized resistance fluctuations versus time (this
last is expressed in simulation steps). The resistance values
have been normalized to provide a zero average and a unit
variance for x(t).

All the details about the SBRN model and its results
can be found in references [17–21]. However, it must be
noted that this model provides a good description of many
features associated with nonequilibrium stationary states
and with the electrical instability of composites and gran-
ular materials [17–19,24], including the electromigration
damage of metallic lines [21]. Finally, it must be under-
lined that, apart from the specific system described by the
SBRN model, the method adopted here for generating the
time series can be also viewed as a pure numerical algo-
rithm for generating time series with different and tunable
correlation properties.

Then, by indicating with R the resistance of the net-
work (expressed in Ω) and with t the time (expressed
in iteration steps), long R(t) time series (typically made
of 1 ÷ 2 × 106 records) have been generated and ana-
lyzed for different values of λ, of the external current
and of the network size. Precisely, normalized series with
zero average and unit variance have been considered:
x(t) ≡ (R(t) − 〈R〉)/σ, where 〈R〉 is the average value of
the network resistance and σ the root-mean-square devia-
tion from the average. The analysis has been performed by
calculating the auto-correlation function and the PDF of
the x records, the return intervals rq of the extreme values
for different threshold q and their distribution Pq(r) (the
values of q are expressed in units of σ). For small λ values
(high level of intrinsic disorder), it has been found that Cx

displays a non-exponential and non-power-law decay. This
behavior is different from that obtained for high λ values
(low level of intrinsic disorder), where Cx decays exponen-
tially (consistently with the Lorentzian power spectrum
reported in references [17,18,20]). By focusing on this sit-
uation, of interest for systems which are approaching criti-
cality, in the following of this section results will be shown
concerning a network of size 125×125, biased by a current
I = IB = 0.011 A and obtained by taking λ = 0.33.

The x(t) time series is shown in Figure 1 (only a small
portion of the total number of records, N = 1.6 × 106,
is reported in this figure). As evident from Figure 1, the
resistance fluctuations exhibit a strong non-Gaussianity
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Fig. 2. Plot on a log-log scale of the auto-correlation function
of the time series in Figure 1 (black-thick curve). The solid-
grey and the black-dashed curves represent the best-fit with a
stretched exponential and an exponential, respectively.
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Fig. 3. Return intervals of extreme values above the threshold
q = 5 (in units of root-mean square deviation) for the time
series of Figure 1.

and actually their PDF is well described by the Bramwell-
Holdworth-Pinton distribution [25], as discussed in ref-
erences [19,20]. The auto-correlation function of x(t) is
reported in Figure 2. The function significantly deviates
from a single exponential and from a power-law while it
is well fitted by a stretched exponential:

Cx(s) = A exp[(−s/b)γ)] (4)

with the following values of the fitting parameters: A =
1.23, b = 74.9 and γ = 0.54. Many other functions have
also been considered for the best-fit of the Cx data. How-
ever, it has been found that the stretched exponential op-
timizes the best-fit procedure with the minimum numbers
of fitting parameters. It must be remarked that a stretched
exponential describes a behavior intermediate between a
simple exponential decay (which is obtained for γ = 1)
and a constant behavior (a limit of power-law) for γ → 0.
Moreover, the correlation time corresponding to the ex-
pression (4) of Cx is finite.

The sequence of the Nq return intervals of the values
above the threshold q = 5 is plotted in Figure 3 as a se-
quence of Nq impulses. The figure shows that a succession
of very short return intervals (rq � 100, the apparently
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Fig. 4. Return intervals of extreme values above the threshold
q = 1.5 for the same time series of the previous figures. Here
only the first 5000 intervals are shown.
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Fig. 5. Double-logarithmic plot of the normalized probability
density of the return intervals for different thresholds q.

empty portions of the horizontal axis) is followed by a
succession of long intervals, indicating a strong clustering
of the extreme events, a feature similar to that exhib-
ited by the data of Bunde et al. [6] which instead con-
cern long-term correlated records and very different from
what observed for uncorrelated time series [26]. Thus, the
clustering of the extreme events is present even if the x
records are not long-term correlated while they are char-
acterized by a finite correlation time. This clustering of
the extreme values persists also by lowering the thresh-
old. This is shown in Figure 4 which reports the sequence
of the return intervals obtained for q = 1.5.

Figure 5 displays the probability density func-
tion Pq(r) of the distribution of the return intervals as a
function of rq/Rq for different thresholds q ranging from
−1.5 to 5.0 (the probability density has been normal-
ized to Pq(1)). A double-logarithmic plot of Pq has been
adopted because in this representation a stretched expo-
nential function with exponent γ appears as a straight line
of slope γ. Therefore Figure 5 shows that the distribution
of the return intervals of extreme values of the x-series
is well described by a stretched exponential and that the
value of the exponent γ is independent of the threshold q
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Fig. 6. The same as Figure 5 but calculated after random
shuffling the x-records.

in a large range of q-values. This occurs even in absence
of long-term correlations and in presence of a finite corre-
lation time. This not-obvious result agrees with the con-
clusions of Altmann and Kantz formulated in their recent
paper [2]. For comparison, Figure 6 reports the probability
density function Pq(r) of the distribution of the return in-
tervals obtained after random shuffling the records of the
same x-series: in this case γ = 1, i.e. the distribution of
the rq is exponential, as it must be for uncorrelated time
series.

3 Conclusions

The distribution of return intervals of extreme events
has been studied in time series with finite-term corre-
lations. Precisely, it has been analyzed the distribution
of return intervals of extreme values of the resistance
fluctuations displayed by a resistor with granular struc-
ture in nonequilibrium stationary states. The resistance
fluctuations were calculated by using the SBRN model
based on a resistor network approach [17–21]. It has been
found that for highly disordered networks, when the auto-
correlation function displays a non-exponential and a non-
power-law decay, the distribution of the rq is well de-
scribed by a stretched exponential with exponent γ largely
independent of the threshold q. This result shows that the
stretched exponential distribution describes the distribu-
tion of the return intervals of extreme events not only
when long-term correlations are present in the time se-
ries [2,5,6], but also when finite-term correlations exist
among the records, characterized by a non-exponential de-
cay, a situation typical of systems which are approaching
criticality.
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